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ABSTRACT West Nile virus (WNV) is a neurotropic flavivirus that can cause signifi-
cant neurological disease. Mouse models of WNV infection demonstrate that a proin-
flammatory environment is induced within the central nervous system (CNS) after
WNV infection, leading to entry of activated peripheral immune cells. We utilized ex
vivo spinal cord slice cultures (SCSC) to demonstrate that anti-inflammatory mecha-
nisms may also play a role in WNV-induced pathology and/or recovery. Microglia are
a type of macrophage that function as resident CNS immune cells. Similar to mouse
models, infection of SCSC with WNV induces the upregulation of proinflammatory
genes and proteins that are associated with microglial activation, including the mi-
croglial activation marker Iba1 and CC motif chemokines CCL2, CCL3, and CCL5. This
suggests that microglia assume a proinflammatory phenotype in response to WNV
infection similar to the proinflammatory (M1) activation that can be displayed by
other macrophages. We now show that the WNV-induced expression of these and
other proinflammatory genes was significantly decreased in the presence of minocy-
cline, which has antineuroinflammatory properties, including the ability to inhibit
proinflammatory microglial responses. Minocycline also caused a significant increase
in the expression of anti-inflammatory genes associated with alternative anti-
inflammatory (M2) macrophage activation, including interleukin 4 (IL-4), IL-13, and
FIZZ1. Minocycline-dependent alterations to M1/M2 gene expression were associated
with a significant increase in survival of neurons, microglia, and astrocytes in WNV-
infected slices and markedly decreased levels of inducible nitric oxide synthase
(iNOS). These results demonstrate that an anti-inflammatory environment induced by
minocycline reduces viral cytotoxicity during WNV infection in ex vivo CNS tissue.

IMPORTANCE West Nile virus (WNV) causes substantial morbidity and mortality,
with no specific therapeutic treatments available. Antiviral inflammatory responses
are a crucial component of WNV pathology, and understanding how they are regu-
lated is important for tailoring effective treatments. Proinflammatory responses dur-
ing WNV infection have been extensively studied, but anti-inflammatory responses
(and their potential protective and reparative capabilities) following WNV infection
have not been investigated. Minocycline induced the expression of genes associated
with the anti-inflammatory (M2) activation of CNS macrophages (microglia) in WNV-
infected SCSC while inhibiting the expression of genes associated with proinflamma-
tory (M1) macrophage activation and was protective for multiple CNS cell types, in-
dicating its potential use as a therapeutic reagent. This ex vivo culture system can
uniquely address the ability of CNS parenchymal cells (neurons, astrocytes, and mi-
croglia) to respond to minocycline and to modulate the inflammatory environment
and cytotoxicity in response to WNV infection without peripheral immune cell in-
volvement.
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Since the introduction of West Nile virus (WNV) to North America in 1999, WNV has
become the most common cause of epidemic encephalitis in the United States and

is responsible for significant neurological morbidity and mortality (1–3). Mouse models
of WNV infection have highlighted the importance of peripheral immune cells in the
clearance of WNV from the central nervous system (CNS). Inhibiting peripheral immune
cell invasion or function has thus been shown to greatly increase mortality due to
increased CNS viral burden (4–6) and/or improper recruitment and activation of anti-
viral immune cells (7–9).

While the importance of these robust antiviral proinflammatory responses in WNV
clearance from the CNS is well known, questions remain as to the extent to which these
responses can cause damage to neuronal populations that are normally protected from
cytotoxic inflammatory cells by the blood-brain barrier (BBB). Increasing evidence
suggests that resolving proinflammatory responses in the CNS increases the extent of
CNS tissue injury (10–12). Anti-inflammatory (M2) factors are associated with resolution
of proinflammatory (M1) activation and cytotoxic functions with subsequent roles for
neuroprotection and trophic support (13–16). However, the ability of M2 factors to
modulate the pathology of WNV infections is poorly understood. In mouse models of
WNV infection, little is known about how the balance of pro- and anti-inflammatory
responses influences neuronal survival and to what extent CNS cells themselves
regulate the inflammatory environment.

By utilizing an ex vivo slice culture model system of CNS tissue, our laboratory has
replicated critical hallmarks of WNV infection in vivo, including high levels of neuronal
infection and death, robust microglial activation and astrogliosis, and significant ex-
pression of relevant antiviral M1 cytokines/chemokines (17, 18). This system is ideal for
investigating the intrinsic responses of CNS parenchymal cells (including neurons,
microglia, and astrocytes) to WNV infection and their ability to engage inflammatory
signaling pathways in the absence of potentially confounding contributions from
peripheral immune cells or mediators. Although neurons, microglia, and astrocytes all
respond to WNV infection, microglia are considered the primary CNS immune cells and
likely play the most significant role in modulating inflammatory conditions within the
CNS, at least before the entry of peripheral immune cells.

Considering the therapeutic potential of altering inflammatory states in the WNV-
infected CNS, it is important to understand the abilities of CNS parenchymal cells in
mediating M1 and/or M2 signaling events (particularly for microglia as the resident
macrophages). In this report, we treated WNV-infected spinal cord slice cultures (SCSC)
with minocycline, a well-characterized anti-inflammatory drug (15, 19, 20) with known
inhibitory effects on proinflammatory (M1) microglial activation (21–26). We previously
showed in this slice culture system that minocycline could modestly reduce WNV
growth (�1 log10 unit) while reducing the expression of some M1 genes (18); here, we
further characterized the effect of minocycline on a wider range of inflammatory genes
and proteins, as well as investigating its effect on cell death and tissue health during
WNV infection.

Our results indicate that minocycline treatment resulted in significant reductions in
the RNA and protein expression of genes associated with proinflammatory M1 micro-
glial activation following WNV infection of SCSC and concurrent increases in the
expression of genes associated with anti-inflammatory M2 microglial activation. These
minocycline-dependent effects coincided with significant reductions in microglial ac-
tivation, observed via changes in cellular morphology and the expression of ionized
calcium binding adaptor molecule 1 (Iba1), a classical marker for M1 microglial activa-
tion. In conjunction with these changes in gene expression, WNV-induced cell death
was significantly reduced across neuron and glial cell populations, with a notable
inhibition of inducible nitric oxide synthase (iNOS) expression.
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RESULTS
WNV-induced upregulation of Iba1 gene expression and M1 CC motif chemo-

kine gene and protein expression in SCSC is inhibited by minocycline. Microglial
M1 activation is commonly assessed by the upregulation of Iba1 (18, 27–30) and CC
motif chemokine ligand proteins, including CCL2, CCL3, CCL5, and CCL7 (31–34). We
have previously shown that WNV infection of SCSC results in the upregulation of both
Iba1 and CC motif chemokines (18). In addition, these chemokines have important roles
in WNV-induced neuroinflammation (7, 35, 36). Using reverse transcription-quantitative
PCR (RT-qPCR) analysis, we now show that WNV-induced increases in expression of Iba1
and CC motif chemokines in WNV-infected SCSC are reduced by minocycline (Fig. 1 and
2). As expected, Iba1 expression rose dramatically following WNV infection of SCSC (Fig.
1A). Minocycline treatment of WNV-infected SCSC inhibited this effect. At 3 days
postinfection (dpi), 5 dpi, and 7 dpi, Iba1 expression was significantly reduced with
minocycline treatment compared to time-matched SCSC treated with vehicle alone. To
determine if astrocytes were also activated following WNV infection in SCSC, GFAP (glial
fibrillary acidic protein) expression was also evaluated via RT-qPCR; GFAP expression
rose in WNV-infected SCSC compared to mock-infected SCSC, confirming the presence
of WNV-induced astrocyte activation in the system. However, no significant differences
were observed between vehicle- and minocycline-treated SCSC (Fig. 1A). These gene
expression analyses indicated that minocycline exclusively affected microglial activa-
tion, but not astrocyte activation.

We next assessed via immunohistochemistry (IHC) if minocycline had any effect on
microglial cell morphology that is stereotypical of microglial activation during WNV
infection in SCSC (18) (Fig. 1B). Using antibodies against Iba1 and WNV envelope

FIG 1 Minocycline treatment inhibits microglial activation during WNV infection of SCSC. (A) RT-qPCR
analyses were performed for Iba1 and GFAP expression in SCSC taken at 1 dpi, 3 dpi, 5 dpi, and 7 dpi.
Changes in gene expression levels are indicated as fold increase over mock infection, with 1-dpi
mock-infected, vehicle-treated SCSC used as the normalized control sample (expression set as 1) and
beta-actin used as the normalized control gene. Iba1 gene expression (left) increased in WNV-infected
(gray bars) compared to mock-infected (open bars), vehicle-treated SCSC in a time-dependent manner,
indicating microglial activation. Minocycline (Mino) treatment of WNV-infected SCSC (hatched gray bars)
caused significant decreases in Iba1 expression compared to WNV-infected, vehicle-treated counterparts
(gray bars). GFAP gene expression (right) increased in WNV-infected, vehicle treated SCSC (gray bars)
compared to mock-infected, vehicle-treated controls (open bars), but not as dramatically nor as high as
Iba1. There was no decrease in WNV-induced GFAP expression following minocycline treatment. The
asterisks indicate statistically significant differences in Iba1 expression in minocycline-treated versus
vehicle-treated, WNV-infected SCSC (*, P � 0.05; **, P � 0.01; unpaired Student t test). The error bars
indicate standard errors of the mean. Fifty SCSC (n � 2 mice) were used per experimental condition. (B)
Immunohistochemistry of Iba1 (green) and WNV-E (red), imaged with a 60� objective, from mock-
infected (top row) and WNV-infected (bottom row) SCSC at 6 dpi. Iba1 expression was increased in
WNV-infected SCSC compared to mock-infected samples, but the ameboid and enlarged microglial cells
seen in vehicle-treated SCSC were absent from minocycline-treated SCSC.
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protein (WNV-E), notable differences in microglial size and ameboid state (indicating
proinflammatory chemotaxis) were evident, with microglia in vehicle-treated samples
both larger and more ameboid than microglia in minocycline-treated samples. This
qualitative assessment suggests that microglial activation states were dramatically
altered in minocycline-treated WNV-infected samples.

The expression of CCL2, CCL3, CCL5, and CCL7 was also assessed via RT-qPCR in
WNV-infected SCSC with or without minocycline treatment (Fig. 2A). The expression of
each chemokine was markedly increased over the 7-day time course in WNV-infected,
vehicle-treated SCSC; significant reductions in expression were noted for each chemo-
kine during minocycline treatment at various time points, particularly the later time
points (5 dpi and 7 dpi).

To determine if these changes in gene expression reflected changes in protein
expression, enzyme-linked immunosorbent assays (ELISA) were performed at 5 dpi for
CCL2, CCL3, CCL5, and CCL7. For each chemokine examined, significant increases in
protein levels for WNV-infected, vehicle-treated SCSC were observed compared to
mock-infected SCSC. With minocycline treatment in WNV-infected SCSC, significant
reductions were observed for CCL2, CCL3, and CCL5 (Fig. 2B). These results indicate that
at 5 days postinfection, the majority of CC motif chemokines are strongly inhibited in
their expression at the RNA and protein levels with minocycline treatment during WNV
infection and that these reductions are associated with inhibition of M1 microglial, but
not astrocyte, activation.

Minocycline differentially alters inflammatory gene expression during WNV
infection of SCSC. Minocycline is known to broadly inhibit proinflammatory activity
while promoting anti-inflammatory activity (15, 19, 37, 38). We used RT-qPCR analysis
to evaluate the expression of a series of canonical pro- and anti-inflammatory genes
during a 7-day time course following WNV infection of SCSC (Fig. 3). Via literature

FIG 2 Minocycline treatment reduces proinflammatory CC motif chemokine gene and protein expression during WNV infection of SCSC.
(A) RT-qPCR analyses were performed for CC motif chemokine gene expression in SCSC taken at 1 dpi, 3 dpi, 5 dpi, and 7 dpi. Each
chemokine examined (CCL2, CCL3, CCL5, and CCL7) rose with WNV infection in a time-dependent manner, with significant reductions in
expression with minocycline-treated (hatched gray bars) compared to vehicle-treated (gray bars), WNV-infected SCSC. Fifty SCSC (n � 2
mice) were used per experimental condition. (B) ELISA analyses for CCL2, CCL3, CCL5, and CCL7 from SCSC lysates taken at 5 dpi. Each
chemokine was elevated in WNV-infected, vehicle-treated SCSC (gray bars) compared to mock-infected controls (open bars), with
significant reductions following minocycline treatment (hatched gray bars) for CCL2, CCL3, and CCL5. The asterisks indicate statistically
significant differences in minocycline-treated versus vehicle-treated, WNV-infected SCSC (*, P � 0.05; **, P � 0.01; ***, P � 0.001; unpaired
Student t test). The error bars indicate standard errors of the mean. One hundred SCSC (n � 4 mice) were used per experimental condition.
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review, we determined a panel of genes to assess pro- and anti-inflammatory activation
(13–16, 39–47). As examples of proinflammatory genes with relevance to WNV infec-
tions, we investigated the expression of CXC motif chemokine 10 (CXCL10), interferon
alpha (IFN-�), interleukin 1-beta (IL-1�), IL-6, interferon regulatory factor 1 (IRF1), and
tumor necrosis factor alpha (TNF-�) (Fig. 3A), and for anti-inflammatory genes, we
investigated the expression found in inflammatory zone 1 (FIZZ1), IL-4, IL-7, IL-10, and
IL-13 and triggering receptor expressed on myeloid cells 2 (TREM2) (Fig. 3B). In order to
better understand the overall impact of minocycline treatment on the balance between
pro- and anti-inflammatory gene expression, we examined the percent change in
individual gene expression with minocycline treatment compared to the control for all
tested genes in each separate category (Fig. 4). This comparison makes it clear that
minocycline broadly and significantly reduced proinflammatory gene expression and
led to an enhancement in the expression of anti-inflammatory genes.

Minocycline is neuroprotective during WNV infection in SCSC. We have previ-
ously shown that at 6 dpi, WNV infection causes substantial neuronal death in SCSC;
over 90% of cells stained with the neuronal marker microtubule-associated protein 2
(Map2� cells) had WNV-E cytoplasmic staining, which is indicative of widespread WNV
neuronal infection (18). To assess if minocycline treatment is neuroprotective during
WNV infection, we stained cells with WNV-E and Map2 at 6 dpi in SCSC. WNV infection
caused a dramatic loss of Map2� cells in WNV-infected compared to vehicle-treated
SCSC (Fig. 5A and B). Minocycline treatment reduced, but did not fully prevent, this
neuronal loss (Fig. 5B). A similar significant increase in neuronal survival after minocy-

FIG 3 Minocycline treatment broadly modulates proinflammatory and anti-inflammatory gene expression during WNV infection of SCSC.
RT-qPCR analyses were performed for proinflammatory (A) and anti-inflammatory (B) gene expression in SCSC taken at 1 dpi, 3 dpi, 5 dpi,
and 7 dpi. (A) Expression of proinflammatory genes rose with WNV infection in a time-dependent manner, with varying levels of
minocycline-dependent decreases (or no effect) in expression. (B) Expression of anti-inflammatory genes rose with WNV infection in a
time-dependent manner, with broad minocycline-dependent increases in expression at different time points. The asterisks indicate
statistically significant differences (*, P � 0.05; **, P � 0.01; unpaired Student t test). The error bars indicate standard errors of the mean.
Fifty SCSC (n � 2 mice) were used per experimental condition.
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cline treatment was also seen with another neuronal marker, NeuN, at the same time
point (data not shown). These results indicate that minocycline is neuroprotective
during WNV SCSC infection.

Minocycline protects glial cells during WNV infection in SCSC. To further un-
derstand the effect of minocycline on WNV-induced cytotoxicity, we assessed the
health of microglia and astrocytes during WNV infection in SCSC. To determine the
extent of microglial loss during WNV in SCSC, we examined the expression of Iba1 via
IHC (Fig. 5C and D). In WNV-infected SCSC, Iba1� cells were markedly decreased
compared to mock-infected controls. However, in minocycline-treated SCSC, WNV
infection did not reduce microglial cell populations as dramatically as in vehicle-treated
SCSC (Fig. 5D), indicating that minocycline treatment protected microglia from WNV-
induced cell death.

To determine how WNV infection induced astrogliosis and astrocyte death, we
stained for GFAP in WNV-infected SCSC via IHC (Fig. 5E and F). In WNV-infected SCSC,
astrocytes are highly reactive to WNV with notable astrogliosis (a process that involves
increased GFAP expression and thickened cellular processes) compared to mock-
infected SCSC. Astrocyte death was also apparent in WNV-infected SCSC, as depicted by
small GFAP� particles. Minocycline treatment significantly enhanced astrocyte survival
but did not alter WNV-induced astrogliosis (Fig. 5F).

Minocycline reduces iNOS expression during WNV infection in SCSC. Minocy-
cline has been extensively shown to reduce the expression of cytotoxic factors and to
promote neuronal survival across disease models (15, 19, 20, 25, 26). To determine if
minocycline treatment could reduce the expression of cytotoxic factors during WNV
infection of CNS tissue, we observed the expression of iNOS via IHC in SCSC infected
with WNV at 6 dpi. iNOS is a classic cytotoxic factor produced by microglia (48–50) that
is expressed during WNV infections (51), and its expression can be inhibited by
minocycline (52, 53).

In 6-dpi WNV-infected SCSC treated with vehicle alone, iNOS expression was mark-
edly increased compared to mock-infected SCSC (Fig. 6). In contrast, minocycline-
treated SCSC infected with WNV did not show increased levels of iNOS expression.

DISCUSSION

Our findings provide further evidence to a growing body of work that shows that,
under certain conditions, skewing the balance of inflammatory mediators toward an

FIG 4 Minocycline treatment reduces proinflammatory (M1) gene expression and increases anti-
inflammatory (M2) gene expression during WNV infection in SCSC. RT-qPCR analysis data were graphed
to show the percent change in expression with minocycline treatment at each time point for each gene.
When categorized as M1 or M2, a clear pattern was observed with minocycline treatment, with
large-scale reductions in M1 gene expression (red bars) and increases in M2 gene expression (green bars).
Iba1 and GFAP expression are also indicated (black bars) to show minocycline effects on glial activation.
The asterisks indicate statistically significant differences (*, P � 0.05; **, P � 0.01; ***, P � 0.001; unpaired
Student t test).

Quick et al. Journal of Virology

November 2017 Volume 91 Issue 22 e00569-17 jvi.asm.org 6

http://jvi.asm.org


FIG 5 Minocycline treatment is protective for neurons, microglia, and astrocytes during WNV infection in SCSC. (A)
Immunohistochemistry of Map2 (green) and WNV-E (red) from mock-infected (top row) and WNV-infected (bottom
row) SCSC at 6 dpi. Mock-infected SCSC showed dispersed Map2 expression throughout tissue, while WNV-infected
SCSC had greatly reduced Map2 expression and cell bodies. Minocycline-treated SCSC with WNV infection had
noticeably more Map2� cells than their vehicle-treated counterparts. (B) Quantification of Map2� cell bodies
imaged with a 10� objective. Across multiple FOV, there was a large loss of Map2� cells in WNV-infected SCSC
compared to mock-infected SCSC but a statistical difference between minocycline- and vehicle-treated SCSC with
WNV infection. Mock infected, n � 8 SCSC; WNV infected, n � 12 SCSC. (C) Immunohistochemistry of Iba1 (green)
and WNV-E (red) from mock-infected (top row) and WNV-infected (bottom row) SCSC at 6 dpi. WNV infection causes
substantial microglial loss in vehicle-treated SCSC, with less microglial loss observed with minocycline treatment. (D)
Quantification of Iba1� cell bodies imaged with a 10� objective. Large loss of Iba1� cell bodies was observed for
WNV-infected SCSC, but cell loss was more prominent for vehicle-treated SCSC than for minocycline-treated SCSC.
For each condition, n � 12 SCSC. (E) Immunohistochemistry of GFAP (green) and WNV-E (red) from mock-infected
(top row) and WNV-infected (bottom row) SCSC at 6 dpi. WNV infection caused significant astrogliosis (increased
GFAP expression and thickened processes) compared to mock-infected SCSC. Increased astrocyte death was
apparent in vehicle-treated WNV-infected SCSC (small GFAP� particles) but not as widespread in minocycline-
treated, WNV-infected SCSC. (F) Quantification of the percentage of each FOV in which astrocytes were normal,
astrogliotic, or dead in images taken with a 20� objective. Dead astrocytes were observed in WNV-infected SCSC
but to a greater extent in vehicle-treated versus minocycline-treated SCSC. Both WNV-infected SCSC had similar
levels of astrogliosis. For each condition, n � 8 SCSC. The asterisks indicate statistically significant differences (*,
P � 0.05; **, P � 0.01; unpaired Student t test). The error bars indicate standard errors of the mean.
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anti-inflammatory versus a proinflammatory environment can have beneficial effects
for cell survival during cytotoxic events in the CNS. For WNV infections, having the
ability to efficiently induce M2 signals to repair neurons and return homeostatic
conditions after viral clearance via M1 neuroinflammation would likely be important for
improving recovery and avoiding complications from chronic inflammation. Across
disease models, there is continuing debate over whether distinct M1 and M2 pheno-
types exist in vivo (54–57), but the fact that microglia can produce both pro- and
anti-inflammatory mediators is widely accepted (13, 14, 16, 58). The ability of minocy-
cline to specifically inhibit M1 microglial activation while also appearing to promote M2
signaling and cell survival during WNV infection, as described in this report, is consis-
tent with other studies that have shown protective effects with minocycline adminis-
tration for other neuroinvasive viral infections, including Japanese encephalitis virus
(59–61), Venezuelan equine encephalitis virus (62), and experimental reovirus (63)
infections. Whether minocycline would have therapeutic potential in treatment of
human WNV infections or mouse models remains unclear; delayed administration of
minocycline could conceivably allow early antiviral immune responses to occur but
prevent their later deleterious effects.

There is prior evidence that anti-inflammatory responses can confer beneficial
effects in relation to WNV infections. Elevated levels of IL-4 are found in human patient
populations that have better long-term recovery compared to patients with worse
overall outcomes; this coincides with reduced proinflammatory gene expression in their
peripheral blood mononuclear cells (PBMC) (64). Additionally, in mouse models of WNV
infection, combinatorial treatment with antiviral medication and the histone deacety-
lase inhibitor vorinostat (which can have anti-inflammatory properties) led to improved
survival, and the therapeutic effects of vorinostat on WNV infection were dependent on
the timing of drug administration during WNV infection (65).

To what extent the timing and efficacy of M1 versus M2 responses make a functional
difference in various disease models remains to be fully elucidated. Nonetheless,

FIG 6 Minocycline treatment reduces iNOS expression during WNV infection in SCSC. (Right column)
Immunohistochemistry of iNOS (green) from mock-infected and WNV-infected SCSC at 6 dpi. Clusters of
iNOS� cells were delineated in vehicle-treated SCSC with WNV infection, whereas no similar cells were
seen in minocycline-treated SCSC with WNV infection or any mock-infected SCSC. (Left column) DAPI
(4=,6-diamidino-2-phenylindole) imaging showing equivalent numbers of cells for each field of vision.
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understanding how proinflammatory effects are regulated and subsequently resolved
in the CNS is of vital importance in pinpointing how best to intervene against
neurological diseases that remain difficult to treat. In particular, at least for the WNV
slice culture model, the evidence presented here indicates a potential role for
minocycline-dependent protection for neurons and glial cells with a concurrent bal-
ance shift in gene expression favoring M2 over M1. While the mechanism by which
minocycline confers anti-inflammatory effects and inhibits microglial activation is un-
known, this system provides an effective platform to further investigate how these
events occur.

Our results demonstrate that minocycline treatment causes specific decreases in
proinflammatory gene expression and concurrent increases in anti-inflammatory gene
expression, giving credence to the theory of different (M1 versus M2) microglial
phenotypes. The effect of minocycline on the expression of the CC motif chemokines
(in particular CCL2, CCL3, and CCL5) during WNV infection was notable. These chemo-
kines have important roles in WNV-induced neuroinflammation (7, 35, 36) and are
prominently produced by activated microglia (31–34); the genes were significantly
downregulated after minocycline administration during WNV infection. Some proin-
flammatory genes do not change significantly with minocycline treatment (CXCL10 and
IFN-�), which is likely due to nonmicroglial production; notably, WNV-infected neurons
are able to produce CXCL10 (66), and neurons and astrocytes have the ability to
produce significant amounts of proinflammatory cytokines/chemokines during viral
infections (67–70).

The relevance of elevated M2 gene expression during WNV infection in SCSC is
unclear; with minocycline administration, the expression of some M2 genes rose
further, but whether this was the primary catalyst for the modest increase in cell
survival versus the decrease in M1 gene expression (or a combination of the two)
remains to be determined. Combined with the modest reduction in WNV growth with
minocycline treatment reported previously in this system (18) and the strong inhibition
of iNOS expression, several possible mechanisms might be involved in the reduced
tissue injury observed in this study.

Attempts to detect M2 proteins at 5 dpi were unsuccessful, but the observed
changes in gene expression should not detract from their potential relevance, given
that most M1 proteins (besides the CC motif chemokines) were also difficult to
detect with ELISA methods. One of the advantages of the SCSC model is the ability
to garner significant amounts of data from small samples, so future pursuits
concerning protein expression may need to come from brain slice cultures (BSC) of
WNV infection.

A highlight of this study is the dichotomy seen in M1 and M2 gene expression
following minocycline treatment during WNV infection (Fig. 3); while much controversy
surrounds the concept of M1 versus M2 categorization, minocycline clearly influenced
the expression of these inflammatory genes in a stereotypical manner that would be
expected given its status as a well-characterized anti-inflammatory reagent. The fact
that these alterations were observed in a WNV disease model that had not previously
been part of the wider M1/M2 debate adds to the discussion as to what the role of
balancing M1 and M2 effects is in the course of neuropathology and how microglia
influence neuroinflammation more broadly.

Many questions remain as to how microglia and astrocytes interact with each other
to influence neuronal survival during cytotoxic events (71–74). While our evidence here
suggests minocycline inhibited microglial activation (but not astrocyte activation) and
reduced cell death, the specific contributions of individual cell types to pro- and
anti-inflammatory gene expression are not completely clear. Further studies using the
ex vivo model system could prove useful in determining specific contributions made by
the support cells of the CNS during WNV infection and in testing pharmacologic
reagents that can alter their activity.
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MATERIALS AND METHODS
SCSC. SCSC were prepared from neonatal (5- to 6-day-old) NIH Swiss Webster mice in compliance

with IACUC protocols and institutional guidelines at the University of Colorado, Denver (U. C. Denver).
The protocol has been previously described in detail (18). Briefly, spinal cords were removed and
embedded in 2% agarose and mounted onto a Vibratome cutting instrument (VT1000S; Leica). Trans-
verse sections (400 �m) of thoracic and lumbar regions of the spinal cord were sliced and collected in
medium ((Dulbecco’s modified Eagle’s medium [DMEM]) (10 mM Tris, 28 mM D-glucose, pH 7.2, 95%
O2-5% CO2). Spinal cord sections were removed from the agarose and plated onto 30-mm 0.4-�m-pore-
size cell culture membrane inserts (Millipore). The inserts were placed into 35-mm well plates with 1.1 ml
culture medium (neurobasal A: 10 mM HEPES, 400 �M L-glutamine, 600 �M GlutaMAX, 1� B27
(Invitrogen), 60 �g/ml streptomycin, 60 U/ml penicillin, 6 U/ml nystatin) supplemented with 10% fetal
bovine serum (FBS) and maintained at 5% CO2 in a cell culture incubation chamber. The next day, new
culture medium was added with 5% FBS, and 2 days later, the medium was changed without FBS
supplementation. Medium changes were performed every 2 days.

WNV infection. NY99 strain (clone-derived strain 382-99) stocks were procured as previously
described (75). Three days after preparing SCSC (when the medium was changed without FBS supple-
ment), SCSC were inoculated directly with 1 � 104 PFU/slice in a volume of 20 �l culture medium. SCSC
were washed 12 h later to remove excess medium and virus.

Minocycline administration. Minocycline HCl (Sigma) was prepared at a stock concentration of 1
mM in slice culture medium and then diluted to 20 �M in final slice culture medium to be applied to
SCSC during medium changes. Minocycline treatment began at the time of WNV infection; the WNV
inoculum was directly applied to SCSC, whereas minocycline was not directly applied to SCSC and had
access via medium only.

IHC. SCSC were washed in PBS and fixed in 10% neutral buffered formalin for at least 1 h. The fixed
SCSC were rewashed in PBS and immersed in block solution (PBS, 4% normal goat serum, 2% bovine
serum albumin, 0.3% Triton X) for 1 h. The SCSC were then incubated overnight at room temperature
with primary antibodies diluted in block solution. The next day, the SCSC were washed 3 times with wash
solution (PBS, 0.3% Triton X) and then incubated for 2 h at room temperature with secondary antibodies
in block solution. After being washed 3 times with wash solution, the SCSC were briefly rinsed with
distilled water (dH2O) before being mounted onto microscopy slides with ProLong Gold antifade reagent
(Molecular Probes). For cell assessments and quantification experiments, the slides were imaged using a
Nikon PCM-2000 laser scanning confocal microscope, with image procurement conducted with Sim-
plePCI software (v4.6; Compix). For iNOS detection, the slides were imaged using a Zeiss Axiocam on a
Nikon Eclipse E800 epifluorescence microscope, with image procurement conducted with Axiovision
software (v4.8; Zeiss). The primary antibodies used were mouse anti-WNV envelope protein (1:200; ATCC),
rabbit anti-Map2 (1:100; Millipore), rabbit anti-Iba1 (1:500; Wako), rabbit anti-GFAP (1:900; Abcam), and
rabbit anti-iNOS (1:300; Abcam). The secondary antibodies used were goat anti-mouse Alexa Fluor 568
and goat anti-rabbit Alexa Fluor 488 (1:1,000; Invitrogen).

Cell count quantification. Cells were counted by hand on Microsoft Paint software. Each image
constituted a field of vision (FOV) for a specified magnification; FOV were of similar regions for each SCSC
(i.e., the anterior horn) to ensure proper comparisons of cell populations.

RT-qPCR. SCSC were removed from culture membranes and homogenized in RLT buffer (Qiagen)
with 1% beta-mercaptoethanol and loaded into RNeasy spin columns (Qiagen). Following the manufac-
turer’s protocols for the RNeasy minikit (Qiagen), purified RNA was collected from the spin columns. The
RNA quality and concentration were measured with an Agilent 2100 bioanalyzer, and cDNA was
prepared with iScript (Bio-Rad) following the manufacturer’s directions. The cDNA was mixed with
primers (Table 1) and 2� SYBR green master mix (SABiosciences) to 20-�l volumes in individual wells of

TABLE 1 Gene primers used in RT-qPCR analysis

Gene primer GenBank accession no.

CCL2 NM_011333
CCL3 NM_011337
CCL5 NM_013653
CCL7 NM_013654
CXCL10 NM_021274
FIZZ1 NM_020509
GFAP NM_010277
Iba1 NM_019467
IFN-� NM_008333
IL-1� NM_008361
IL-4 NM_021283
IL-6 NM_031168
IL-7 NM_008371
IL-10 NM_010548
IL-13 NM_008355
TNF-� NM_013693
TREM2 NM_031254
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a 96-well PCR plate, and PCR amplification was performed with a CFX96 thermocycler (Bio-Rad). Relative
gene expression was determined via threshold cycle analysis using Bio-Rad CFX Manager software.
Beta-actin expression was the control gene setting, and 1-dpi mock vehicle SCSC was the normalization
set point for individual gene analyses.

ELISA. SCSC were collected in lysis buffer (R&D) and homogenized/sonicated to create lysate to
screen with a custom Mouse Mix & Match Cytokine ELISArray strip kit (Signosis). Lysate was added to
ELISArray plate wells for 2 h of binding incubation, and the plates were washed 3 times and then
incubated for 1 h with streptavidin-bound detection antibody. After 3 additional washes, streptavidin-
horseradish peroxidase (HRP) solution was incubated for 45 min. Detection solution was then added to
each well for 30 min before stop solution was applied, turning the solution yellow, depending on the
amount of bound detection antibody. The strength of the yellow color was quantified colorimetrically at
450 nm with an Emax spectrometer (Molecular Devices).

Figures and statistical analysis. All graphs and statistical analyses were created and assessed with
GraphPad Prism software.
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